INVITATION LETTER

JOINT RESEARCH SEMINAR BETWEEN RMIT & UNIVERSITY OF SCIENCE, VNU-HCM

TOPIC: AI FOR ADVANCED PROCESSING_ FROM SPEECH AND VISION TO MULTI-SCALE COMPUTATIONAL MODELLING.

Hochiminh City, 15th July 2022

The School of Science, Engineering & Technology (SSET), RMIT Vietnam and University of Science, VNU-HCM Vietnam would like to invite you to our joint Research Seminar: **AI for Advanced Processing: from Speech and Vision to Multi-scale Computational Modelling.**

There will be 04 speakers, invited guests:

- Assoc Prof Minh-Triet Tran, University of Science, VNU-HCMC Vietnam will present the Vision-based Smart Interaction System.
- **Dr Son Tran**, University of Science, VNU-HCMC Vietnam will present the Speech enhancement application using a variational autoencoder.
- **Dr Khiem Nguyen**, University of Glasgow, UK will present the application of neural networks to constitutive modelling of multi-scale materials.
- **Dr Cuong Tan Nguyen**, SSET, RMIT Vietnam will present a data-driven approach to gradient elasticity, phase-field modelling and two time-series forecasting approaches: a statistical method namely ARIMA and a neural network learning-based method, namely LSTM for fracture problems.

Date & Time: Friday 15 July 2022; 3pm-6pm

Venue: RMIT Saigon South Campus (702 Nguyen Van Linh, D7, HCMC) & online mode via Teams.

Registration:

https://forms.office.com/r/iRhJ9UK7qE

No	Time (VN)	Content	PIC/ Presenter
1	3.00pm- 3.10pm	Welcome speech	Prof Brett Kirk - SSET, RMIT Dr Alexandru Fechete - SSET, RMIT
2	3.10pm- 3.35pm	Introduce the 1st presenter Research Presentation from VNU-HCMUS	Dr Alexandru Fechete - SSET, RMIT Dr Son Tran - VNU HCMUS
3	3.35pm- 3.40pm	Q&A	Dr Alexandru Fechete - SSET, RMIT
4	3.40pm- 4.05pm	Introduce the 2nd presenter Research Presentation from VNU-HCMUS	Dr Alexandru Fechete - SSET, RMIT Dr Triet Tran - VNU HCMUS
5	4.05pm- 4.10pm	Q&A	Dr Alexandru Fechete - SSET, RMIT
6	4.10pm- 4.20pm	Tea Break	
7	4.20pm- 4.45pm	Introduce the 3rd presenter Research Presentation from University of Glasgow	Dr Alexandru Fechete - SSET, RMIT Dr Khiem Nguyen - University of Glasgow, UK
8	4.45pm- 4.50pm	Q&A	Dr Alexandru Fechete - SSET, RMIT
9	4.50pm- 5.15pm	Introduce the 4th presenter Research Presentation from RMIT	Dr Alexandru Fechete - SSET, RMIT Dr Cuong Nguyen, SSET, RMIT
10	5.15pm- 5.20pm	Q&A	Dr Alexandru Fechete - SSET, RMIT
11	5.20pm- 5.25pm	Closing speech	Prof Brett Kirk - SSET, RMIT
12	5.25pm-6pm	Networking event	

Agenda:

Please kindly register for the event at the above link so that we can send detailed information & presentation abstract to you.

Presenters:

Assoc Prof Minh-Triet Tran (Member, IEEE) received the B.Sc., M.Sc., and Ph.D. degrees in computer science from University of Science, VNU-HCM, in 2001, 2005, and 2009. In 2001, he joined University of Science. He was a Visiting Scholar with the National Institutes of Informatics (NII), Japan, from 2008 to 2010, and the University of Illinois at Urbana–Champaign (UIUC), from 2015 to 2016. His research interests include cryptography, security, computer vision, and human–computer interaction. He is currently the Vice President of University of Science, VNU-HCM, and Director of John von Neumann Institute, VNU-HCM. He is also Membership Development, Student Activities Coordinator of IEEE Vietnam. He is also a member of the Advisory Council for Artificial Intelligence development of Ho Chi Minh City, and Vice President of Vietnam Information Security Association (VNISA, South Branch)

Dr Son Tran received the bachelor's degree in science from the Faculty of Information Technology, University of Science, VNU-HCM, Vietnam in 1997, and the Ph.D. degree in engineering from the Department of Electrical and Computer Engineering, Toyota Technological Institute, Japan, in 2005. From 2005 to 2010, he was a Researcher of smart vehicle projects with Toyota Technological Institute, Japan. He is currently a Lecturer with the Faculty of Information Technology, University of Science, VNU-HCM. His research interests include machine learning, image processing, speech processing, and computer vision.

Dr Khiem Nguyen obtained Bachelor in Mathematics (Vietnam National University), Master in Computational Engineering (Ruhr University of Bochum; RUB) and Ph.D. in Applied Mathematics (RUB). Prior to working in Glasgow, he worked for more than five years in Civil Engineering and Mechanical Engineering at the University of Stuttgart, Helmholtz Research Center for Materials Science and ETH Zurich. He joined the University of Glasgow as a lecturer in Multiscale Materials in January 2022.

Dr. Cuong Tan Nguyen received Master in Science and Ph.D. degrees in Mechanics Uncertainty, and Simulation in Engineering from the University of Texas at Austin. His research expertise is in computational mechanics, data-driven computing and applications of machine learning in applied mechanics. Dr Cuong's recent research projects are in developing a data-driven framework for non-local materials simulation, machine learning pipeline for phase-field modelling of fracture problems, transformed Newton's method with fixed-point iteration for highly nonlinear problems, and a non-destructive testing method for pre-stressed level inversion in elastic rods.

	Presenter	Title	Abstract
1	Assoc Prof	Vision-based Smart Interaction	Collecting and analyzing daily activity logs can
	Minh-Triet		provide potential insights for better
	Tran		understanding and possible optimization for
			individual and organizational activities and
			operations. There are multiple sources to gather
			information in various formats during daily
			activities. People usually post photos, video clips,
			or messages to their social channels everyday.
			People may record their daily activities with
			wearable cameras or other types of sensors.
			Millions of surveillance cameras capture various
			events in traffic systems, offices, or supermarkets.
			It is an increasing demand to process and analyze
			such information, mostly in visual format, to
			develop useful services and utilities for smart
			environments.
			in this talk, we present several modalities to
			dovelop notantial applications for smart
			anvironments. Our proposed systems are based
			on practical social needs and aim to provide
			people natural experience with smart services
			and utilities
			- People can access to augmented data and
			services for tourism or shopping by recognizing
			the current context and retrieving similar known
			cases.
			- Lost items can be found or memories can be
			retrieved or verified by searching daily logs.
			- Reminiscence can help people to positively
			revive past memories and connections with their
			relatives.
			- Regular events and anomalies can be detected
			from surveillance systems for appropriate
			actions.
			- Event simulation in virtual or mixed reality
			environments can be generated from real life
			data for education and training.
			we also discuss about privacy and security issues
			in conecting and analyzing daily activity logs.
1	1		

Abstract:

2	Dr Son	Speech enhancement using a	Speech enhancement is essential for speech-
	Tran	variational autoencoder	related applications because this process
			improves the quality of input speech signals
			before processes in the primary model. Most of
			the current approaches for this task focuses on
			separating the speech of commonly high-
			frequency noises or a particular background
			sound. They cannot remove the signals which
			intersect with the human speech in its frequency
			range. We propose a hybrid approach combining
			a variational autoencoder (VAE) and a bandpass
			filter (BPF) to deal with this problem. This method
			can extract and enhance the speech signal in the
			mixture of many elements such as speech signal.
			high-frequency noises, and many kinds of
			different background sounds which interfere with
			the speech sound. Experimental results showed
			that our model could effectively extract the
			, speech signal in terms of Signal interval ratio and
			Signal to Distortion Ratio. On the other hand, we
			can adjust the passband to identify the frequency
			range at the output signal to apply for a particular
			application like gender classification. In the
			following research, we will emphasize the impact
			of a variational model on the whole process. A
			general class for VAE, called Dynamical
			Variational Autoencoder (DVAE), will extract the
			primary elements that contribute to the most
			content of the signal. Mainly, DVAE is a general
			form of traditional VAE that uses many modern
			techniques such as recurrent connection,
			attention, drop out, Etc., for both Encoder and
			Decoder networks. We design a new architecture
			in DVAE class to exploit the structure of a signal
			frame in the frequency domain. Our motivation
			for this work is that the human brain can easily
			extract and understand a piece of speech even in
			a noisy environment. A potential cause is that
			human speeches establish a structural form in the
			frequency domain. This aspect of human speech
			has never been mined before, and we hope that
			our new solution could improve the current state
			of the art solution for the speech enhancement
			problem.

3	Dr Khiem	Application of neural networks	We propose a surrogate model for two-scale
	Nguyen	to constitutive modelling of	computational homogenization of elastostatics at
		multi-scale materials.	finite strains. The macroscopic constitutive law is
			made numerically available via an explicit
			formulation of the associated macro-energy
			density. This energy density is constructed by
			using a neural network architecture that mimics a
			high-dimensional model representation. The
			database for training this network is assembled
			through solving a set of microscopic boundary
			values problems with the prescribed macroscopic
			deformation gradients (input data) and
			subsequently retrieving the corresponding
			averaged energies (output data). Therefore, the
			two-scale computational procedure for the
			nonlinear elasticity can be broken down into two
			solvers for microscopic and macroscopic
			equilibrium equations that work separately in two
			stages, called the offline and online stages. A
			standard finite element method is employed to
			solve the equilibrium equation at the macroscale.
			As for microscopic problems, an FFT-based
			collocation method is applied in tandem with the
			Newton-Raphson iteration and the conjugate-
			gradient method. Particularly, we solve the
			microscopic equilibrium equation in the
			Lippmann-Schwinger form without resorting to
			the reference medium and thus avoid the fixed-
			point iteration that might require quite strict
			numerical stability condition in the nonlinear
			regime.

4	Dr Cuong	Data-driven approach to	Traditional simulations in computational
	Nguyen	gradient elasticity and time-	modelling of engineering materials rely on two
		series forecasting for phase-field	very different types of equations. The first one is
		modelling of fracture problems	about universal laws such as conservations of
			mass, momentum and energy, whereas the
			second one is related to material models which
			are calibrated from experimental material data. It
			is well-known that the second type of equation
			contains modeling errors and often fails to match
			new experimental findings. In order to take
			advantage of data science, experimental data sets
			are used directly in simulations. We try to
			minimize the distance between the phase-space
			derived from universal laws and the cloud of data
			points obtained from experiments. This approach
			was first introduced by Prof. Ortiz from Caltech. In
			this talk, we present our extension of this
			paradigm to deal with nonlocal response of
			graphono based panedovices
			graphene-based hanodevices.
			Fracture is one of the most typical failure modes
			of many natural and human-made materials such
			as concrete, rock, ceramic, metals and biological
			soft tissues. In order to predict crack initiation
			and propagation efficiently, the phase-field
			paradigm has gained significantly popularity over
			the past decade. Using the phase-field variable
			helps us to model the crack propagation process
			without undergoing the mesh refinement of finite
			element models. However, the main drawback of
			phase-field modelling lies in the expensive
			computational cost due to the requirement of
			using sufficiently fine meshes. To predict faster
			the results of fracture problems, we combine a
			phase-field model with a time-series forecasting
			method. Specifically, in order to build a
			forecasting machine learning pipeline, we utilize
			two time-series forecasting approaches: a
			statistical method namely AKIIVIA and a neural
			network learning-based method, namely LSTM.

Email Contact:

Ms Hoa Do – SSET External Engagement Senior Coordinator

hoa.dongoc@rmit.edu.vn